
Software Quality Starts with the Modelling
of Goal-Oriented Requirements

Emmanuelle Delor, Robert Darimont

CEDITI

Avenue Georges Lemaître, 21
B-6041 Charleroi

Belgium
Phone : +32 (0) 71 25 94 04

Fax : +32 (0) 71 37 20 64

{Emmanuelle.Delor , Robert.Darimont}@cediti.be

André Rifaut

CETIC
rue Clément Ader, 8
 B-6041 Gosselies

 Belgium
 Phone : +32 (0) 71 91 98 25

 Fax : +32 (0) 71 91 98 02

Andre.Rifaut@cetic.be

Abstract
Developing high quality requirements specifications is mandatory for a number of critical industrial systems.

The KAOS goal-driven methodology has been designed to elicit and validate requirements and also to prove
their consistency. This methodology has been successfully implemented in two integrated tools (Objectiver and
FAUST) and has been validated in many industrial projects.

All of these have shown how the quality of the requirements can be improved with KAOS/Objectiver due to
the following factors :

- a rigorous reasoning and decision making on the requirements,
- the constructive nature of the goal-oriented method,
- the tracing facilities automatically generated between properties and specifications, and
- the automatic generation of reports based on the goal- oriented structure of the requirements.
Another contribution to the quality of requirements is the tight integration between informal requirements

and formalised requirements. One the one hand, the KAOS methodology allows the analyst to give a complete
informal description of the specification. On the other hand, the FAUST extensions of the Objectiver
environment allows to describe and analyse the formal aspects of the specification by making use of some of the
best formal tools hidden behind the stakeholder view on the requirements.

Key-words: goal-directed approaches, formal methods, V&V, safety-critical system modelling

2/6

1. Introduction

A recent report from the Standish Group estimates that a staggering 40 percent of all software projects fails.
To a large degree, these failures are linked to requirements - either they are incorrectly defined from the
beginning or are poorly managed as they evolve throughout the project life cycle. In safety-critical applications,
those errors can have life-threatening consequences on the software environment or can induce financial
disasters.

In Section 2, the KAOS goal-driven methodology will be succinctly presented. Next, in Section 3, presents
how the research results on the methodology have been implemented into a tool called Objectiver. Two specific
extensions to Objectiver, supporting the formal aspects of the method, are presented in Section 4. The last
section presents the benefits obtained by the use of the tools and the methodology in commercial industrial
projects.

2. The KAOS goal-driven methodology

The KAOS goal-driven methodology [1] is based on a rich framework for requirements elicitation, analysis
and management.

The aim of the KAOS method is to provide a constructive assistance during the requirements engineering
activity, starting from the elicitation of the objectives of the system and its integration into the environment, and
ending with the formal definition of the specifications of the most critical parts of the system. To keep the method
as close as possible to the way the stakeholders communicate and analyse their needs, KAOS is based on a goal-
oriented process: goals (called objectives hereafter) are easy to understand and communicate, describe the
problem instead of the solution, can be refined at will to different levels of abstraction and allow a local and
incremental analysis process while the global consistency is strongly under control.

The KAOS method relies also on the tight integration of four complementary views describing not only the
future system and its environment, but also the existing system and its environment. The four models are
seamlessly integrated into one formal model and expressed using one formal language. The following list details
the four complementary views.

FIGURE 1. Objectiver web-based documentation of a goal refinement analysis.

3/6

1. The view on the objectives. The objectives can be refined into sub-objectives, allowing one to go from

an abstract description to a more concrete one. The parent objective is explicitly linked to its children objectives
through a “refinement” link (Figure 1). In this view links existing between objectives and obstacles that can occur
against objectives can also be displayed.

2. The view on the application domain objects. This view describes the objects, relationships, and events
of the system and of the environment. It is compatible with UML object diagrams in many points. A difference is
that the application domain properties are expressed in the temporal logic instead of OCL. (OCL will be used
when its formal semantics will be introduced in the UML reference documents.)

3. The view on the agents. This view describes software and human agents of the system and of its environ-
ment. The responsibilities and capabilities of each agent are modelled through the use of the “responsibility” link
between an agent and a requirement that must be made fulfilled by this agent, and the “capability” link between
an agent and operations it can perform. Each requirement must be under the responsibility of exactly one agent.

4. The view on the operations. Objectives are eventually refined into operational software requirements.
The formalism used to describe the operations is similar to a pre/post-conditions based formalism. In this view
the specific requirements which are fulfilled thanks to some pre/post conditions are explicitly linked together
through an “operationalization” link.

3. The OBJECTIVER environment

To address the increasing interest in the methodology by industrial partners, a complete environment
supporting the methodology[2], is currently being developed. It contains the same components found in most IDE
tools :

• a graphical editor to represent the concepts and their relationships,
• a text editor allowing the analyst to record interview summaries or to associate descriptive texts to

diagrams,
• an attribute editor to specify predefined attribute values or user-defined attribute-value pairs
• an explorer to retrieve diagrams, text documents, and concepts by names, types or occurrences
• an instant cross-reference navigator to go back and forth through all traceability and reference links

existing between concepts or documents

4/6

 Functional Architecture

Pattern Reuse

Early
Model
Checker

Animator

Query Based
Checker

Obstacle
Conflict
Analyser

Test Case
Generator

Specification
Repository Temporal Logic / AST Foreign Tool Server

Model Checker Automatic Theorem Prover

Boolean SAT Solver Constraint Solver

Application Clients

Integration
with

Objectiver

of FAUST extensions

The most interesting functionalities of the tool are based on the specific characteristics of the goal-oriented
methodology :

• a hypertext documentation generator; the produced hypertext documents allow one to inspect the entire
model with a Internet browser tool in a very user-friendly way based on the rich traceability links that exist
between goals, constraints, domain properties, object, agents and operations

• a script language used to define checks about the deviation from company specific quality standards and
to customize automatically generated textual or graphical views on those deviations

• a powerful report generator that allows you to automatically produce reports satisfying standards about
requirements documents (e.g. IEEE-830), or company specific standards by simply defining different templates,
and based on the rich traceability links derived from the goal-oriented structure of the requirements.

The Objectiver tool is a meta case tool: the KAOS methodology is not hard-coded in the tool. Evolution

with existing standards or customisations to company specific methodologies of the tool are easy to implement.
Specifications are saved in XML format, including diagrams (W3C SVG format) and reports (W3C FOP format).
In particular, the rich traceability links between requirements can be easily feed to other CASE tools.

The Objectiver tool has been successfully used on major platforms (Windows, Linux) as it is implemented

in Java. Foreign components can be tightly integrated through the meta-model based Open API. In particular, the
integration with world-wide known CASE tools has been successfully tested. In summary, extensions and
integration can be achieved in three ways:

• by exchanging data in XML format ;
• by interfacing with the meta-model based Open API ;
• by querying the tool with OQL (ODMG standard of object-oriented query language).

4. The FAUST extensions for formal analysis

In order to address the high quality assurance of safety-critical applications, extensions are provided to the
Objectiver tool allowing the analyst to formally analyse the requirements.The goal-oriented methodology
produces not only the specifications of the operational model that must be implemented, but also all high-level
properties (mostly goals) that must be verified by the operationalimplementation. With this extension the
properties, the specification and the operational model are formally described with a first-order linear real-time
temporal logic. Moreover, the formal aspects can be exporter to third parties formal tools with the model-based
Open API of Objectiver. This makes Objectiver an excellent platform for structuring formal models in a user-
readable way and exchanging the formal models with the most powerful third parties formal tools.

 The benefits of the tight integration with
Objectiver are :

• a seamless integration of formal
extensions with the informal descriptions
made with Objectiver, leaving to the analyst
the decision to formalize only the parts of the
requirements which are identified as critical.

• the splitting of the formal require-
ments into small user-friendly manageable
parts so that existing formal technology such
as automatic theorem provers, model-
checkers, SAT-engines, constraint-solvers,
etc. can be used automatically without user
interaction.

• minimize the formal modelling
activity through the implementation of the
constructive aspects of the goal-oriented
method, e.g. by reusing pattern libraries or by
generating conflicts or obstacles that may exist, or by the generation of state-machines and their animations based
on domain-level representations, for easier understanding and user validation.

The toolbox [4] will be composed of different formal modules interacting with each other. The “Pattern Reuse”
module aims at helping the analyst to reuse formal decomposition patterns. An extensible library of formal
patterns will be provided. Formulas will be automatically generated and checked when a pattern has been

Monitor
Generator

5/6

selected. The “Test Case Generator” will generate automatically tests suites covering all properties identified
during the formal analysis. In particular, all goals and obstacles will be covered by the tests suites. The
“Obstacle/conflict Analyser” will try to generate incrementally all possible formulas representing obstacles or
conflicts that can exists in the goal model. From the goal and the operational model , the “Monitor Generator”
will produce automatically the code of a system monitoring the possible violation of goals made by the target
system implementing the specification and whose code is not formally verified. The last two modules are the ones
currently under development :
• The early requirements validation and verification module.
The purpose of this tool is twofold. First, to validate the formulas in order to make sure that they represent
accurately the informal description of the concepts, and second, to verify the correctness of the model.
 The validation is done through the automatic creation of scenarios showing conflicts, obstacles, or simply
expected good behaviors of the system and its environment in a user-friendly way, hiding the formulas. This
helps to elicit the boundaries of the environment that must be represented and to validate the boundaries between
the sub-systems and the environment. For the verification phase, this tool can automatically show inconsistencies
between parts of the specification, e.g. between the operational model and the goal model. The errors are also
presented by traces using the vocabulary of the stakeholders and are easily understood because they only concern
a few properties at a time. All verifications are compositional in nature: they can be made incrementally in the
background during the modelling activity and without the need of user interaction. With this tools, the analyst
will obtain the formal description of high level properties (e.g. safety or liveness properties) that must be satisfied
by the specification, the formal specification and its correctness wrt. the properties, and the formal description of
an operational model implementing the specification and its correctness wrt. the specification.
• The animator of operational specification. The animation allows stakeholders to manually create traces
and navigates through them easily thanks to the customized domain dependent 2D rendering of the traces of the
system. The animator produces automatically the finite state machine, and automatically checks if the properties
are satisfied in the traces.

5. Industrial experience report

The experience acquired from numerous industrial studies performed by CEDITI [3] at the semi-formal level
has shown that the KAOS framework is highly efficient when carrying out requirements analyses, devising IT
master plans or producing strategic analyses.

The following table summarizes the kinds of projects already realized.

Publishing Reqs for a complex copyright management system, for Media Sales, Distribution &
Advertising Management

Aeronautics Requirements traceability and safety-critical analysis for Air Traffic Control Procedures
Drugs Industry & Distribution Strategic analysis; Reqs for an e-learning system
Telecommunications Requirements re-engineering of a cable telephone system
Language Industry Requirements for Web-based professionnal and on-the-fly translation tools
Hospitals IT plan, Requirements for standard clinical reporting
Bulldozer Factory Finite scheduling optimisation

Requirements documents (typically 100 to 150 pages long) produced by the method and its associated tools

are IEEE 830 standard compliant.

6. Conclusions

Formal methods are often advocated for drastically improving software quality because errors are pruned when
specifications are proved to fulfil the desired properties of the future system. The KAOS goal-driven
methodology is an answer to the difficulties found in the application of formal methods : it provides constructive
guidance for finding the properties of the system and incrementally deriving the specification by local analysis.
The Objectiver environment can be used to collect, structure the description of the system and the properties it
must satisfy. Moreover the tracing facilities between properties and specifications, and the automatic generation
of specific reports help the analyst to rigorously reason and make decision on the requirements. Finally, on the
one hand, the KAOS methodology allows the analyst to give a complete formalisation of the specification. On the
other hand, the FAUST extensions of the Objectiver environment use some of the best formal tools and allow
formal aspects to be completely hidden behind the stakeholder view on the requirements.

6/6

Acknowledgment. The Kaos approach results from several research projects led by Prof. A. van Lamsweerde
(University of Louvain) and funded by the European Union, the Belgian and the Walloon governments. The
Objectiver commercial tool is developped by Jean-Luc Roussel, Denis Ballant, Christophe Belpaire, Denis
Genard, Philippe Legrain, Cédric Nève and Alain Vanbrabant, with the significant contribution of André Rifaut
for providing requirements, feedback, and prototypes for the tool. The work on FAUST extensions is supported
by the EU (FEDER and FSE) and the Walloon region (DGTRE). Kaos analyses that have proved the benefits of
the approach have been led by the authors of this paper. Several PhD theses have contributed to explore
advanced features eventually deployed in the tool ; ongoing PhD theses already give promising results.

7. References

[1] A. van Lamsweerde: Building Formal Requirements Models for Reliable Software. Invited Paper Ada-
Europe 2001, Leuven, May 14-18, 2001 LNCS, Vol. 2043, Springer-Verlag

A full bibliography of publications about the method can be found at URL http://www.info.ucl.ac.be/research/
projects/AVL/ReqEng.html.

[2] This tool can be downloaded from http://www.objectiver.com

[3] Industrial experience report with Objectiver at Cediti can be found at URL:
http://www.cediti.be/download/DossierGrailKaosAnglais.pdf

[4] FAUST formal modules screen snapshots and videos : http://www.cetic.be/~faust/toolbox/FME03-
snapshots.html.

